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Abstract In this paper, we investigate a robust estimation of the number of
components in the mixture of regression models using trimmed information
criteria. Compared to the traditional information criteria, the trimmed crite-
ria are robust and not sensitive to outliers. The superiority of the trimmed
methods in comparison with the traditional information criterion methods is
illustrated through a simulation study. Two real data applications are also
used to illustrate the effectiveness of the trimmed model selection methods.

Keywords Mixture of linear regression models · Model selection · Robust-
ness · Trimmed likelihood estimator

1 Introduction

Within the family of mixture models, the mixture of linear regression models
has been studied extensively. The mixture of linear regression models was first
introduced by Goldfeld and Quandt (1973) as a very general form of switch-
ing regression. The unknown parameters were estimated based on moment-
generating functions, from a likelihood point of view. Jones and McLachlan
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(1992) applied the mixture of regressions in a data analysis and used EM al-
gorithm to fit these models. For a general introduction to mixture models, see
Lindsay (1995), Böhning (1999), and McLachlan and Peel (2000).

Choosing the number of components for mixture models has long been con-
sidered as an important but very difficult research problem. Many methods
have been proposed. See, for example, the AIC and BIC methods (Leroux,
1992), distance measures based methods (Chen and Kalbfleisch, 1996; James
et al., 2001; Charnigo and Sun, 2004; Woo and Sriram, 2006; Ray and Lind-
say, 2008), and hypothesis testing based methods (Chen et al., 2001, 2004).
Hawkins et al. (2001) proposed to choose the number of components in the
mixture of linear regression models using the likelihood equations. Recently,
Chen and Li (2009) and Li and Chen (2010) proposed an EM test approach
for testing the order of finite mixtures.

However, most of the above model selection methods are not robust in
the presence of outliers. Even a single outlier can totally change the result.
In this article, we mainly focus on the information criteria based model se-
lection methods for mixtures of regressions and consider a robust version of
these methods based on the trimmed likelihood estimate (TLE, Neykov et al.,
2007). A simulation study and two real data applications show that the new
robust model selection methods work comparably to traditional information
criteria based methods when the data are not contaminated but have superior
performance when there are outliers.

The rest of the paper is organized as follows. In Section 2, we give an
introduction of five traditionally used information criteria for model selection
and introduce their corresponding robust versions based on TLE. A simulation
study and two real data applications are used in Section 3 to demonstrate the
effectiveness of the proposed robust model selection methods. A discussion
section ends the paper.

2 Robust Model Selection Information Criteria for Mixtures of
Regressions

2.1 Introduction of mixtures of regressions

Let Z be a latent class variable with P (Z = j|x) = πj , j = 1, · · · ,m, where x
is a p-dimensional vector and m is the number of components. Given Z = j,
the response y depends on the p−dimensional predictor x in a linear way:

y = xTβj + εj ,

where βj = (β1j , · · · , βpj)T and εj ∼ N(0, σ2
j ). Here, we assume that x in-

cludes both the constant 1 and predictors. The conditional distribution of Y
given x without observing Z can be written as:

f(y|x,θ) =

m∑
j=1

πjφ(y;xTβj , σ
2
j ), (1)
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where φ(y;µ, σ2) denotes the normal density with mean µ and variance σ2,
and θ = (π1, σ

2
1 ,β1, · · · , πm, σ2

m,βm)T .
If the number of components m in the mixture of linear regression models

was known, θ could be estimated by maximizing the log-likelihood,

`(θ) =

n∑
i=1

log


m∑
j=1

πjφ(yi;x
T
i βj , σ

2
j )

 . (2)

Note that the maximizer of (2) does not have an explicit solution and is usu-
ally estimated by the EM algorithm (Dempster et al., 1977). It is well known
that the log-likelihood function (2) is unbounded and goes to infinity if one
observation lies on one of the component lines and the corresponding compo-
nent variance goes to zero. When the likelihood is unbounded, we define the
MLE as the maximum interior/local mode (Hathaway, 1985, 1986; Chen, Tan,
and Zhang, 2008; Yao, 2010).

2.2 Some information criteria for model selection

If the number of components m is unknown for mixture models, many meth-
ods have been proposed to determine the order m. Among them, information
criteria have been popularly used to choose the number of components for
mixture models due to their simplicity. If the log-likelihood (2) is treated as
an objective function, one might tend to choose the model that maximizes the
log-likelihood of the observed data. However, as pointed out by Celeux and
Soromenho (1996), the log-likelihood is an increasing function of m. There-
fore, the log-likelihood (2) can not be directly used to determine the number
of components for mixture models. Many papers, such as Akaike (1974), Boz-
dogan (1993), and Rissanen (1986, 1987) have sought methods to remedy this
problem by adding a penalty term to the log-likelihood.

Akaika’s information criterion (AIC) is one of the most popular measures,
and was proposed by Bozdogan and Sclove(1984) and Sclove (1987) in the
mixture context. It takes the form:

AIC =− 2`(θ̂) + 2k,

where k is the number of parameters to be estimated and `(θ̂) is the maximized
value of the log-likelihood function for the estimated model.

Bayesian information criterion (BIC), proposed by Schwarz (1978), is an-
other commonly used criterion, an approximation to twice the log Bayes factor
(Fraley and Raftery, 1998). The approximation relies on regularity conditions
that do not hold in the mixture models setting, but BIC has been shown to
provide a consistent estimate of the number of components in mixture models
(Keribin, 2000). It is defined by

BIC =− 2`(θ̂) + k log n,
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where n is the number of observations, or equivalently, the sample size.

As an alternative to AIC and BIC, the Hannan-Quinn information criterion
(HQIC) is another criterion for model selection. It is given as

HQIC =− 2`(θ̂) + 2k log(log n),

where k is the number of parameters to be estimated and n is the number of
observations. Although often cited, HQIC does not seem to have been pop-
ularly used in practice (Burnham and Anderson, 2002), and like BIC, is not
asymptotically efficient (Claeskens and Hjort, 2008).

AIC and BIC are typically derived from approximations based on asymp-
totic arguments (Kass and Raftery, 1995). They penalize the log-likelihood by
an additive factor and are relatively simple to implement. Although there are
theoretical limitations on the applicability of these two methods, they have
been proven to work quite well for model selection in mixture models.

BIC works well with the case that each mixture component corresponds
to a separate cluster. However, if the number of clusters in the data set is
different from the number of components, Biernacki et al. (2000) proposed the
integrated complete likelihood (ICL) criterion as a modification. Let zij be the
component label indicator,

zij =

{
1, if ith observation is from jth component;
0, otherwise.

and zi = (zi1, . . . , zim). Then, the complete-data is xc = (x1, z1, . . . ,xn, zn)
and its complete log-likelihood is given by:

`c(θ;xc) =

n∑
i=1

log

m∏
j=1

{
πjφ(yi;x

T
i βj , σ

2
j )
}zij

=

n∑
i=1

m∑
j=1

zij log
{
πjφ(yi;x

T
i βj , σ

2
j )
}
.

ICL criterion penalizes the complexity of the mixture model, thus ensuring
the partitioning of data with the greatest evidence.

ICL = −2`c(θ̂;xc) + k log n,

where the missing data z have been replaced by their most probable values ẑ,
given the parameter estimate θ̂, i.e., ẑij = 1 if p̂ij ≥ p̂ik for all k 6= j and 0
otherwise, where

p̂ij =
π̂jφ(yi;x

T
i β̂j , σ̂

2
j )∑m

j=1 π̂jφ(yi;xTi β̂j , σ̂
2
j )
.

In the BIC approach, only the observed likelihood is maximized, however, in
the ICL approach, the complete log-likelihood is used. ICL appears to be more
robust than BIC to the violation of some of mixture model assumptions and
can select a number of clusters leading to a sensible partition of the data.



Robust Estimation of Number of Components 5

Bozdogan (1993) provided an analytic extension of AIC, without violating
Akaika’s principle of minimizing the Kulback-Leibler information quantity.
The new selection criterion, called consistent AIC (CAIC), is defined as:

CAIC =− 2`(θ̂) + k(log n+ 1),

where k is the number of free parameters to be estimated, and n is the sample
size.

The R package “mixtools” (Benaglia et al., 2009) uses AIC, BIC, ICL and
CAIC to do model selection for mixture models. In the examples of Section
3, we use “mixtools” to implement the above four information criteria and
calculate HQIC based on the information provided.

2.3 Trimmed information criteria

It is well known that the maximum likelihood estimate (MLE) via the expectation-
maximization (EM) algorithm works well for the finite mixture of distributions.
However, it is sensitive to outliers. Even a single outlier can cause at least one
of the component parameters to become arbitrarily large. Therefore, the tra-
ditional information criteria introduced in Section 2.2 are sensitive to outliers
in the data set. In this section, we consider a trimmed version of those infor-
mation criteria to robustify the model selection procedures.

Assume that (1−α)× 100% of the observations in the data set are regular
observations, and the remaining α × 100% are unpredictable outliers. The
trimmed likelihood estimate (TLE) of mixture models, proposed by Neykov et
al. (2007), only uses (1−α)× 100% of the data to fit the model, and removes
the remaining α × 100% observations that are highly unlikely to occur if the
fitted model were true. That is,

max
Iα

max
θ

∑
i∈Iα

f(yi|xi,θ), (3)

where f(y | x,θ) is the density defined in (1), and Iα is the subset of {1, . . . , n}
and only contains bn(1− α)c distinct elements of {1, . . . , n}.

By combining the ideas of the trimmed likelihood estimate and the infor-
mation criteria introduced in Section 2.2, we consider the trimmed versions of
AIC, BIC, HQIC, ICL, and CAIC to robustly estimate the number of compo-
nents for the mixture of regression models as follows:

TAIC = −2
∑
i∈Îα

f(yi|xi, θ̂) + 2k, (4)

TBIC = −2
∑
i∈Îα

f(yi|xi, θ̂) + k log n, (5)

THQIC = −2
∑
i∈Îα

f(yi|xi, θ̂) + 2k log(log n), (6)
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TICL = −2
∑
i∈Îα

fc(yi|xi, θ̂, ẑ) + k log n, (7)

TCAIC = −2
∑
i∈Îα

f(yi|xi, θ̂) + k(log n+ 1), (8)

where θ̂ is the trimmed likelihood estimator, Îα is the corresponding index
set, and fc(yi|xc,θ) =

∑m
j=1 zij log

{
πjφ(yi;x

T
i βj , σ

2
j )
}

.

The combinatorial nature of the TLE, that is, all possible
(

n
bn(1−α)c

)
parti-

tions of the data have to be fitted by the MLE, makes the TLE computation-
ally expensive, and infeasible for large data sets. The FAST-TLE algorithm
(Müller and Neykov, 2003; Neykov et al., 2007) was proposed to obtain an
approximative TLE solution, which involves repeated iterations of a two-step
procedure: a trial step followed by a refinement step. Next, we give the compu-
tation procedure to calculate (4)-(8) using FAST-TLE (Neykov et al., 2007).
Algorithm

Input: x, y, α, upk (upper limit for number of components), numini
(number of initial values)

Output: selected models.
for i = 1, ..., upk do

for j = 1, ..., numini do
Find an initial value for θ, denoted by θ0.
while change of (3) ≥ acc do

For a given estimator θ̂, sort f(y|x, θ̂) as f(yν(1)|xν(1), θ̂) ≥ · · ·
≥ f(yν(n)|xν(n), θ̂), then {ν(1), · · · , ν(bn(1− α)c)} forms the

index set Îα.

Given an index set Îα, update the estimator of θ, which maxi
-mizes

∑
i∈Îα f(yi|xi,θ).

end while
end for

Select θ̂ and Îα with the largest (3) value.

Apply θ̂ and Îα to (4)-(8) to calculate the corresponding information
criteria.

end for
return Selected model based on each information criterion.

The initial value θ0 might be found by fitting the mixture of linear regres-
sions to a random subsample of size d from the data, where d is a value larger
than k. In our examples, we tried 40 initial values in total.

We want to point out that we are not the first ones to use the idea of
trimmed information criteria. Neykov et al. (2007) have briefly discussed the
trimmed BIC in their simulation study. Based on their limited empirical expe-
rience, the trimmed BIC works well and could robustly estimate the number
of mixture components. In this paper, we extend such trimmed idea to some
other commonly used information criteria and give more simulation study and
two real data applications in the next section to demonstrate the effectiveness
of the trimmed information criteria.
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3 Simulation Study and Real Data Application

3.1 Simulation study

In this section, we investigate the effectiveness of the trimmed information
criteria and compare them with the traditional information criteria for model
selection for mixture models when outliers are present. To be more specific,
the following five new methods are considered: trimmed AIC (TAIC), trimmed
BIC (TBIC), trimmed HQIC (THQIC), trimmed CAIC (TCAIC), and trimmed
ICL (TICL). The performance of the new methods are compared to AIC, BIC,
HQIC, CAIC, and ICL, whose likelihoods are calculated based on the maxi-
mum likelihood estimate (MLE). The trimming proportion α is set to be 5%
for all information criteria. Similar to TLE, the proportion α is an impor-
tant tuning parameter. Usually a conservative α is desired. In our simulation
study, the proportion of outliers is never greater than 0.05. In Section 3.2, we
use a real data set to illustrate how to data adaptively choose the α using the
graphical tool proposed in Neykov et al. (2007).

To compare the performance of different model selection methods, we re-
port the percentage of times when the number of components is correctly
estimated. In addition, we also report the lower quartile (LQ), the median
(MD), and the upper quartile (UQ) of the estimated number of components
for each method.

We consider the following two mixture of linear regression models:
Example 1 :

Y =

{
0 +X1 +X2 + ε1, if Z = 1,
0−X1 −X2 + ε2, if Z = 2.

Example 2 :

Y =


3 + 3X1 + 4X2 + ε1, if Z = 1,
1 +X1 +X2 + ε2, if Z = 2,
−1−X1 −X2 + ε3, if Z = 3,
−3− 3X1 − 4X2 + ε4, if Z = 4.

The mixing proportions are 0.4 and 0.6 in Example 1, and are all equal to 0.25
in Example 2. In both examples, Xik ∼ N(0, 1) for k = 1, 2. The sample sizes of
n = 100 and n = 200 are conducted over 500 repetitions for Example 1 and 200
repetitions for Example 2. The proportions of outliers are α0 = 0.05, 0.03 and
0.01, and the outliers are generated by shifting the generated Y up by a length
randomly generated from U(7, 10) for Example 1 and U(20, 30) for Example 2.
Note that the trimming proportion is 0.05 for all trimmed information criteria.
Using the above three proportions of outliers, we can check how the trimmed
information criteria work for both the cases where the trimming proportions
are correct and the cases where the trimming proportions are conservative.

For the error distributions, we consider two scenarios. In Scenario 1, the
errors have the distribution as ε ∼ N(0, 1). In addition, in Scenario 2, we also
considered contaminated normals as the distribution of error. To be more spe-
cific, both ε ∼ 0.95N(0, 1) + 0.05N(0, 32) and ε ∼ 0.95N(0, 1) + 0.05N(0, 52)
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are used as the error distributions.

Scenario 1:

Table 1 reports the percentage of times when the number of components
in the mixture of linear regression models is correctly estimated. From Table
1, we can see that the percentages of correct estimates of number of compo-
nents by TBIC, TCAIC, and TICL are much higher than the five traditional
methods, TAIC and THQIC. Both AIC and its trimmed version fail terribly
to estimate the correct number of components. The trimmed versions of BIC,
CAIC, and ICL, on the other hand, can greatly improve the performance of
their original versions when the data is contaminated. In addition, the per-
formance of THQIC is largely affected by the sample size. To our surprise,
the traditional methods perform better when the sample size is small in our
examples, but TBIC, TCAIC, and TICL show better results when the sample
size is large.

To understand better how the methods perform, we also report the lower
quartile, the median, and the upper quartile of the estimated numbers of com-
ponents, in Table 2 and Table 3, for n = 100 and n = 200, respectively. Clearly,
TBIC, TCAIC, and TICL give much better performance than the other meth-
ods. In addition, AIC, BIC, HQIC, CAIC, ICL, and TAIC tend to overestimate
the number of components. The reason why TAIC and THQIC fail might be
due to the small penalty term used as compared to other information criteria.

Scenario 2:

Since the contaminated normals already mimics the outlier case, we did not
add any additional outliers. α = 0.05 is still used as the trimming proportion,
and the simulation results are reported in Table 4 - Table 7. It is clear that
TBIC, TCAIC and TICL still perform the best compared to the traditional
information criteria, TAIC and THQIC. The increment of sample size improves
the performance of all the trimmed information criteria to a large extent, but
no unanimous conclusion can be drawn to traditional information criteria.

In addition, thanks to the comment made by the reviewer, note that in
Table 4, the correct percentage for untrimmed criteria are now much higher
than Table 1. This happens, because for the mixture 0.95N(0, 1)+0.05N(0, 32)
error model, all points have the same mean functions but potential outliers
may have an inflated variance. Then the proportion of outliers may be much
less than 5%.

3.2 Real data analysis

Example 1 (Crabs data). We use the crabs data from R-package “MASS” as
an example to compare different information criteria and their trimmed ver-
sions. Five morphological measurements were taken from 200 crabs of the
species Leptograpsus variegatus, collected at Fremantle, Australia. Following
Garćıa-Escudero et al. (2010), we only focus on analyzing two variables, RW
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n = 100 n = 200

α0 = 0.05 α0 = 0.03 α0 = 0.01 α0 = 0.05 α0 = 0.03 α0 = 0.01

Example 1 (m = 2)

AIC 0% 0.5% 2.5% 0% 0% 0%

BIC 4% 2.5% 18% 0% 0% 8.5%

HQIC 0% 0.5 % 2.5% 0% 0% 0%

CAIC 7.5% 5% 23% 0% 0% 10%

ICL 3.5% 1.5% 17.5% 0% 0% 7%

TAIC 0% 0% 0% 5% 0.5% 0%

TBIC 97.5% 95.5% 86% 100% 99% 99%

THQIC 27.5% 12 % 7.5% 87% 77% 60%

TCAIC 96% 92.5% 88% 100% 100% 98.5%

TICL 97% 93.5% 84% 99.5% 98.5% 98.5%

Example 2 (m = 4)

AIC 5.5% 0% 2.5% 3% 0% 0%

BIC 23% 7.5% 9% 18.5% 5% 1%

HQIC 5.5% 0% 2.5% 2.5% 0% 0%

CAIC 27.5% 10.5% 14% 28% 6% 1%

ICL 23.5% 7.5% 9% 18% 4% 1%

TAIC 2% 2% 1% 25% 16.5% 7%

TBIC 86% 83% 75.5% 100% 98% 98%

THQIC 45% 30.5% 28.5% 86.5% 84.5% 71%

TCAIC 91% 85% 73.5% 99.5% 99.5% 99%

TICL 86% 82% 74.5% 100% 97.5% 97%

Table 1 Percentages of times when the number of components in the mixture of regression
models is correctly estimated when ε ∼ N(0, 1).

(rear width in mm) and CL (carapace length mm), with the objective of dis-
tinguishing between the two crabs sexes, without the other variables. The
variable CL is considered as the response variable while RW is considered as
the explanatory variable. The scatter plot of the data is shown in Figure 1,
where squares and circles denote the two groups of crabs based on their sexes.

Let us suppose that the sexes of the crabs were unknown, and then estimate
the number of components, using α = 0.05 as the trimming proportion for all
the trimmed information criteria. The results are reported in the first row of
Table 8 (α0 = 0, without outliers). It can be seen that all trimmed criteria,
except for TAIC, provide correct estimates of the number of components, when
there are no outliers in the data.

To check the robustness of different model selection methods, similar to
McLachlan and Peel (2000), we artificially add some random outliers to the
original data set, 1%, 3% and 5% outliers, to be more specific. The outliers are
generated uniformly in the rectangle decided by the maximums and minimums
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α0 = 0.05 α0 = 0.03 α0 = 0.01

LQ MD UQ LQ MD UQ LQ MD UQ

Example 1 (m = 2)

AIC 3 4 7 6 8 10 6 8 9

BIC 3 3 3 3 3 3 3 3 3

HQIC 3 4 7 6 8 9 4 7 9

CAIC 3 3 3 3 3 3 2 3 3

ICL 3 3 3 3 3 3 3 3 3

TAIC 9 10 10 9 10 10 9 10 10

TBIC 2 2 2 2 2 2 2 2 2

THQIC 2 8 10 8 9 10 8 9 10

TCAIC 2 2 2 2 2 2 2 2 2

TICL 2 2 2 2 2 2 2 2 2

Example 2 (m = 4)

AIC 5 5 7 5 6 8 5 6 7

BIC 4 5 5 5 5 6 5 5 5

HQIC 5 5 6 5 6 8 5 6 7

CAIC 4 5 5 5 5 5 5 5 5

ICL 4 5 5 5 5 6 5 5 5

TAIC 9 10 10 9 10 10 9 10 10

TBIC 4 4 4 4 4 4 4 4 4

THQIC 4 5 9 4 6 9 4 7 9

TCAIC 4 4 4 4 4 4 4 4 4

TICL 4 4 4 4 4 4 4 4 4

Table 2 The lower quartile (LQ), the median (MD), and the upper quartile (UQ) of the
estimated numbers of components when n = 100 and ε ∼ N(0, 1).

of RW and CL. That is, after generating outliers from U(0, 1) ∗ U(0, 1), we
multiply the x-axis by the range of the RW, and add the mean of RW, and
did the same thing for y-axis with CL. Figure 1 shows an example when 5%
outliers, denoted by dots, were added into the data. The model selection results
are also reported in Table 8, from which we can see that the proposed TBIC,
THQIC, TCAIC, and TICL perform much better than the rest of the methods.
In addition, it is interesting to note that AIC and TAIC tend to overestimate
the number of components, which is consistent with the simulation results.

Example 2 (Australian Institute of Sport). Next, we consider the Australian
Institute of Sport (AIC) data, available from R-package “alr3”. The dataset
describes physical and hematological measurements on 202 athletes (102 male
and 100 female) at the Australian Institute of Sport. As suggested by Cook
and Critchley (2000), here we consider an athlete’s lean body mass as the
response, and regress it on three predictors: height (in cm), weight (in kg),
and red cell count.
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α0 = 0.05 α0 = 0.03 α0 = 0.01

LQ MD UQ LQ MD UQ LQ MD UQ

Example 1 (m = 2)

AIC 3 3 4 3 3 5 3 5 9

BIC 3 3 3 3 3 3 3 3 3.25

HQIC 3 3 4 3 3 5 3 5 8

CAIC 3 3 3 3 3 3 3 3 3

ICL 3 3 3 3 3 3 3 3 4

TAIC 9 10 10 9 10 10 9 10 10

TBIC 2 2 2 2 2 2 2 2 2

THQIC 2 2 2 2 2 2 2 2 4.25

TCAIC 2 2 2 2 2 2 2 2 2

TICL 2 2 2 2 2 2 2 2 2

Example 2 (m = 4)

AIC 5 5 7 5 5 6 5 5 6

BIC 5 5 6 5 5 5.25 5 5 5

HQIC 5 5 6 5 5 6 5 5 6

CAIC 5 5 5 5 5 5 5 5 5

ICL 5 5 6 5 5 6 5 5 5.25

TAIC 5 8 10 6 9 10 8 9 10

TBIC 4 4 4 4 4 4 4 4 4

THQIC 4 4 4 4 4 4 4 4 5

TCAIC 4 4 4 4 4 4 4 4 4

TICL 4 4 4 4 4 4 4 4 4

Table 3 The lower quartile (LQ), the median (MD), and the upper quartile (UQ) of the
estimated numbers of components when n = 200 and ε ∼ N(0, 1).

Example 1 Example 2

n = 100 n = 200 n = 100 n = 200

AIC 13% 11.5% 34% 42.5%

BIC 69% 68.5% 65.5% 80.5%

HQIC 13% 11.5% 32.5% 42.5%

CAIC 72.5% 77.5% 60.5% 83.5%

ICL 68.5% 68% 66% 80%

TAIC 0% 0.5% 0% 6%

TBIC 87.5% 98.5% 66.5% 96%

THQIC 7.5% 68% 17.5% 70%

TCAIC 89.5% 100% 66.5% 94%

TICL 85.5% 98.5% 64% 95%

Table 4 Percentages of times when the number of components in the mixture of regression
models is correctly estimated when ε ∼ 0.95N(0, 1) + 0.05N(0, 32).
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n = 100 n = 200

LQ MD UQ LQ MD UQ

Example 1

AIC 4 7 9 3 5 8

BIC 2 2 2 2 2 3

HQIC 4 6 9 3 5 7

CAIC 2 2 2 2 2 2

ICL 2 2 2 2 2 3

TAIC 9 10 10 9 10 10

TBIC 2 2 2 2 2 2

THQIC 8 9 10 2 2 3

TCAIC 2 2 2 2 2 2

TICL 2 2 2 2 2 2

Example 2

AIC 4 5 7 4 5 6

BIC 4 4 4 4 4 4

HQIC 4 5 7 4 5 6

CAIC 3 4 4 4 4 4

ICL 4 4 4 4 4 4

TAIC 9 10 10 8 9 10

TBIC 4 4 4 4 4 4

THQIC 6 8 10 4 4 5

TCAIC 3 4 4 4 4 4

TICL 4 4 4 4 4 4

Table 5 The lower quartile (LQ), the median (MD), and the upper quartile (UQ) of the
estimated numbers of components when ε ∼ 0.95N(0, 1) + 0.05N(0, 32).

Example 1 Example 2

n = 100 n = 200 n = 100 n = 200

AIC 6% 3.5% 21.5% 12%

BIC 29.5% 20% 46% 41%

HQIC 6% 3.5% 18.5% 12%

CAIC 34.5% 25% 36.5% 44.5%

ICL 29.5% 20% 45% 41%

TAIC 0% 1% 2% 10.5%

TBIC 90% 99.5% 67% 97.5%

THQIC 8% 76.5% 22.5% 75%

TCAIC 91% 99.5% 69% 97.5%

TICL 90% 99% 65.5% 97%

Table 6 Percentages of times when the number of components in the mixture of regression
models is correctly estimated when ε ∼ 0.95N(0, 1) + 0.05N(0, 52).
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n = 100 n = 200

LQ MD UQ LQ MD UQ

Example 1

AIC 5 7 9 4 6 8

BIC 2 3 3 3 3 4

HQIC 4 7 9 4 6 8

CAIC 2 2 3 2 3 4

ICL 2 3 4 3 3 4

TAIC 9 10 10 9 10 10

TBIC 2 2 2 2 2 2

THQIC 9 9 10 2 2 2

TCAIC 2 2 2 2 2 2

TICL 2 2 2 2 2 2

Example 2

AIC 5 6 8 5 6 7

BIC 4 4 5 4 5 6

HQIC 4 5 7 5 6 7

CAIC 2 4 4 4 4 5

ICL 4 4 5 4 5 6

TAIC 9 10 10 7 9 10

TBIC 4 4 4 4 4 4

THQIC 4 9 10 4 4 4.25

TCAIC 3 4 4 4 4 4

TICL 4 4 4 4 4 4

Table 7 The lower quartile (LQ), the median (MD), and the upper quartile (UQ) of the
estimated numbers of components when ε ∼ 0.95N(0, 1) + 0.05N(0, 52).

Table 8 The estimated number of components for crabs data when using traditional and
trimmed information criteria.

AIC BIC HQIC CAIC ICL TAIC TBIC THQIC TCAIC TICL

α0=0 2 2 2 2 2 4 2 2 2 2

α0=0.01 7 2 7 2 2 7 2 2 2 2

α0=0.03 8 2 5 4 4 9 2 2 2 2

α0=0.05 8 4 8 4 4 4 2 2 2 2

According to Cook and Critchley (2000), the 12 males participating in field
events can be considered as one component, and there should be two compo-
nents in the remaining 190 athletes, based on their genders. The estimated
number of components for the AIS data using traditional information crite-
ria are reported in Table 9. After classifying the data based on the foregoing
criterion, we did residual analysis within each component, and the Bonferroni
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Fig. 1 Crabs data: squares and circles denote the two groups of crabs based on their sexes,
and dots denote the randomly generated outliers.

outlier test shows that there are 4 outliers in total. That is, α0 = 0.02 in this
case. Therefore, we tried α = 0.01, 0.03 and 0.05 to the data, and the model
selection results are also reported in Table 9. Clearly, the results by the tradi-
tional information criteria do not provide informative selection result, but the
results by TBIC, TCAIC and TICL are satisfactory.

Table 9 The estimated number of components for Australian Institute of Sports data when
using traditional and trimmed information criteria.

AIC BIC HQIC CAIC ICL

5 4 1 1 4

TAIC TBIC THQIC TCAIC TICL

α=0.01 9 3 9 2 3

α=0.03 10 3 8 3 3

α=0.05 10 3 8 3 3

In all the above examples, we have fixed the trimming proportion α in
advance. To explore how to data adaptively select the trimming proportions,
we apply the graphical tool proposed in Neykov et al. (2007). That is, we fit
the crabs data with a 2-component mixture of linear regression models using a
grid points of α values, ranging from 0% to 50% in steps of 1%. Figure 2 shows
the trimmed likelihoods versus α’s with m = 2, when the actual percentages of
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Fig. 2 Plot of trimmed likelihood versus the trimming proportion with m = 2. The vertical
line corresponds to the true percentages of outliers.

outliers are 1%, 3%, 5% and 10%, respectively, denoted by the vertical lines.
The percentage of outliers can be estimated by the largest α at which the
slope of the curve changes. From Figure 2, we can see that the slope-changing
locations are very close to the true percentages of outliers (corresponding to the
vertical lines). To check how sensitive of the plot to the number of components,
we also draw a similar plot in Figure 3 with m = 3. In this example, Figure 2
and Figure 3 give similar finding. In practice, however, we recommend to first
choose m based on a conservative α. Then we can choose a better α based on
the found m. In addition, we might also iterate the above two steps several
times to improve the accuracy. Please refer to Section 4 for more discussion.

4 Discussion

In this paper, we investigated some trimmed versions of information criteria to
robustly estimate the number of components for mixtures of linear regression
models when outliers are present in the data set. We demonstrated the supe-
riority of the trimmed methods in comparison with the traditional methods
when the data are contaminated using a simulation study and two real data
examples.

However, in this article, we mainly focus on the information criteria based
model selection methods. It requires more research to see whether the trimmed
idea can be used to robustify some other model selection methods, such as EM
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Fig. 3 Plot of trimmed likelihood versus the trimming proportion with m = 3. The vertical
line corresponds to the true percentages of outliers.

test (Chen and Li, 2009; Li and Chen, 2010). Chen and Khalili (2009) used a
penalized likelihood to select the number of components for mixture models.

It will be interesting to see whether robust order selection (determine the
number of components) can be achieved if we apply similar penalty functions
to some existing robust mixtures of regression models, where robust error dis-
tributions are used (e.g., t-distribution in Yao et al., 2004; Laplace distribution
in Song et al., 2014), so that the mixture models are robust in case of outliers
(Neykov et al. 2007; Bai et al. 2012; Bashir and Carter, 2012).

We have applied the graphical tool proposed in Neykov et al. (2007) to
choose the trimming proportion α in the crabs data application. However, as
pointed out by Neykov et al. (2007), such estimated trimming proportions tend
to underestimate the true values in some cases. Therefore, it requires further
study about how to adaptively choose an optimal or a conservative trimming
proportion α analytically.

In this article, we mainly deal with the normal error data. However, we
believe all the proposed trimming idea for model selection criteria can be also
extended to non-normal error data, such as mixtures of poisson regression and
mixtures of logistic regression. The only difference is the definition of likelihood
function used in information criteria.

References

1. Akaike, H. (1974). A new look at the statistical identification model. IEEE Transactions
on Automatic Control, 19, 716-723.



Robust Estimation of Number of Components 17

2. Bai, X., Yao, W. and Boyer, J. E. (2012). Robust fitting of mixture regression models.
Computational Statistics and Data Analysis, 56, 2347-2359.

3. Bashir, S. and Carter, E. (2012). Robust mixture of linear regression models. Communi-
cations in Statistics-Theory and Methods, 41, 3371-3388.

4. Benaglia, B., Chauveau, D., Hunter, D.R. and Young, D. (2009). Mixtools: An R package
for analyzing finite mixture models. Journal of Statistical Software, 32(6), 1-29.

5. Biernacki, C., Celeux, G. and Govaert, G. (2000). Assessing a mixture model for clustering
with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22, 719-725.
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